```
Summary of Baseband Transmission
    Line Coding
    On-Off
    NRZ
    RZ
    Manchester
M-ary baseband signals
    rb}=\frac{1}{\mp@subsup{T}{b}{}
    \gamma bits/symbol (binary case }\gamma=1
    Ts}=\gamma*\mp@subsup{T}{b}{
    rs}=\frac{1}{\mp@subsup{T}{s}{}}=\mathrm{ symbol rate
    B}=\frac{\mp@subsup{r}{s}{}}{2}=\mathrm{ minimum baseband bandwidth
    Symbol detection
    Minimum distance decision algorithm
    Integrate & dump is the same as filter & sample
    Decision based on the output of the Integrate & dump (or filter & sample)
    One symbol error can cause multiple bit errors
ISI
    Pulse shaping
    Criteria for no ISI, p(0) = 1(constant) and \mp@subsup{\sum}{k=-\infty}{\infty}p(t-k\mp@subsup{T}{s}{})=0
        k\not=0
    Raised cosine pulse shaping,
    B}=\mp@subsup{B}{0}{}(1+\alpha)=\mathrm{ baseband bandwidth with pulse shaping
    Eye-diagram
Analog-to-Digital (A/D) conversion
    PAM
    PCM
    (S/N)}\mp@subsup{)}{Q}{}\approx6\gamma(\textrm{dB}
```


Summary of Time Division Multiplexing

Time frame
Time slot \& number of time slots/frame
Number of bits/time slot
Bit rate $=\frac{\# \text { bits } / \text { frame }}{\text { Frame Time }}$
TDMA
TDD
Uplink and downlink
Frame synchronization
TDM/PAM
Minimum baseband bandwidth $=\frac{r_{s}}{2}$ with no pulse shaping (with raised cosine pulse shaping, multiply by $1+\alpha$)
TDM/PCM
Minimum baseband bandwidth $=\frac{r_{b}}{2}$ with no pulse shaping (with raised cosine pulse shaping, multiply by $1+\alpha$)

Summary of DSB-SC

$x_{\text {DSB-SC }}(\mathrm{t})=A_{c} x_{\mathrm{bb}}(t) \cos \left(2 \pi \pi_{c} \mathrm{t}\right)$
$B_{\mathrm{RF}}=2 B_{\mathrm{bb}}$
Spectrum of DSB-SC signals
In general requires a synchronous (coherent) receiver, carrier recovery is needed
DSB-SC is a linear modulation
ASK is a digital modulation using DSB-SC with a specific digital baseband signal, $x_{\mathrm{ON}-\mathrm{Off}}(\mathrm{t})$
$B_{\mathrm{RF}}=r_{b}$
Spectral efficiency $=(1 \mathrm{~b} / \mathrm{s}) / \mathrm{Hz}$
BPSK is a digital modulation using DSB-SC with a specific digital baseband signal, $x_{\text {NRZ }}(\mathrm{t})$
$B_{\mathrm{RF}}=r_{b}$
Spectral efficiency $=(1 \mathrm{~b} / \mathrm{s}) / \mathrm{Hz}$
Power in the DSB-SC signal, $A_{c} x(\mathrm{t}) \cos \left(2 \pi f_{c} \mathrm{t}\right)$, is $P_{\mathrm{DSB}-\mathrm{SC}}=\frac{A_{c}^{2} P_{x}}{2}$

Summary of Quadrature Modulation and Multiplexing

Quadrature Multiplexing allows two signals to use (share) the same RF spectrum, one signal on the Ichannel and one on the Q-channel
Carrier recovery is required to demodulate quadrature modulated signals
Quadrature modulation is used to transmit digital signals
One baseband digital signal (NRZ or M-ary) transmitted on the I-channel and one on the Q-channel
Constellation (signal-space) diagrams
Minimum distance detection of transmitted symbols-in two dimensions

Transmitter block diagram

Receiver block diagram

Relationships:
γ bits/symbol
Symbol time $T_{s}=\gamma T_{b}$
QPSK 2 bits/symbols, $\gamma=2$
M-QAM; M= 2^{r}
M-ary PSK; M= 2^{r}
Maximum spectral efficiency $=\gamma(\mathrm{b} / \mathrm{s}) / \mathrm{Hz}$

Modulation Type	Maximum Spectral Efficency $(\mathrm{b} / \mathrm{s}) / \mathrm{Hz}$
ASK	1
BPSK	1
QPSK	2
8 - ary PSK	3
$16-$ QAM	4
$64-$ QAM	6
$256-$ QAM	8
$1024-$ QAM	10

Representations of RF Signals
$y_{l}(t)=y_{c}(t)+\mathrm{j} y_{s}(t)$
$\operatorname{Re}\left(y_{l}(t) \mathrm{e}^{\mathrm{j} 2 \pi \pi_{c} t}\right)$
$V(t) \cos \left(2 \pi_{c} t+\Theta(t)\right)$
$y_{c}(t) \cos \left(j 2 \pi f_{c} t\right)-y_{s}(t) \sin \left(j 2 \pi f_{c} t\right)$

Summary of Frequency Division Multiplexing (FDM) and Orthogonal Frequency Division Multiplexing (OFDM)

FDM enables sharing of spectrum
Guard bands are placed between the channels to prevent adjacent channel interference.
FDM can support independent transmitters and receivers, i.e., the broadcast case.
Composite baseband signals can be constructed using FDM then modulated to RF.
Bandwidth of FDM signals.
FDD
FDMA
Combined TDMA and FDMA
OFDM
No explicit sidebands
$\frac{1}{T_{s}}=\Delta f$ (subcarriers are orthogonal)
$\mathrm{N}=$ Number of subcarriers
$B_{\mathrm{RF}} \approx(\mathrm{N}+1) \Delta \mathrm{f}$ (Not a function of the QAM modulation on each subcarrier)
$r_{b}=N * \Delta f * \gamma$ ($\gamma=\#$ bits/symbol, assumes same QAM on all N subcarriers)
Transmitter/receiver use IDFT/DFT
OFDM combined with TDMA
Time/Frequence Resource Grid
$T_{f}=$ Frame time $=$ Number of slots $*($ Number of OFDM symbols/time slot $) * T_{s}$
$r_{b}=\frac{\text { Number of bits in a } T_{t}}{T_{t}}$

